Tracking Data Structures Coherency in Animated Ray Tracing: Kalman and Wiener Filters Approach

نویسندگان

  • Sajid Hussain
  • Håkan Grahn
چکیده

The generation of natural and photorealistic images in computer graphics, normally make use of a well known method called ray tracing. Ray tracing is being adopted as a primary image rendering method in the research community for the last few years. With the advent of todays high speed processors, the method has received much attention over the last decade. Modern power of GPUs/CPUs and the accelerated data structures are behind the success of ray tracing algorithms. kd-tree is one of the most widely used data structures based on surface area heuristics (SAH). The major bottleneck in kd-tree construction is the time consumed to find optimum split locations. In this paper, we propose a prediction algorithm for animated ray tracing based on Kalman and Wiener filters. Both the algorithms successfully predict the split locations for the next consecutive frame in the animation sequence. Thus, giving good initial starting points for one dimensional search algorithms to find optimum split locations – in our case parabolic interpolation combined with golden section search. With our technique implemented, we have reduced the “running kd-tree construction” time by between 78% and 87% for dynamic scenes with 16.8K and 252K polygons respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State of the Art in Ray Tracing Animated Scenes

Ray tracing has long been a method of choice for off-line rendering, but traditionally was too slow for interactive use. With faster hardware and algorithmic improvements this has recently changed, and real-time ray tracing is finally within reach. However, real-time capability also opens up new problems that do not exist in an off-line environment. In particular real-time ray tracing offers th...

متن کامل

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

IMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY

Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...

متن کامل

Model-Based Hand Tracking Using an Unscented Kalman Filter

This paper presents a novel method for hand tracking. It uses a 3D model built from quadrics which approximates the anatomy of a human hand. This approach allows for the use of results from projective geometry that yield an elegant technique to generate the projection of the model as a set of conics, as well as providing an efficient ray tracing algorithm to handle self-occlusion. Once the mode...

متن کامل

Time-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter

Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008